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SYSTEM TOPOLOGY

A coupled dynamical system is defined as an assembly of rigid/flexible bodies
that may be coupled by kinematical connections. Large relative displacement
and rotation are permitted. The interfaces between bodies are modeled using
hinges having 0 to 6 degrees of freedom. A hinge is defined as a pair of two
material points, one on each of two adjoining bodies. A reference body is
arb1trat11y selected and it is assumed for convenience that the reference body
is connected to an imaginary inertially fixed body. For consistency, a ficti-
tious hinge is assigned to the reference body by assuming P, (See Figure), an

inertial point. Thus the number of hinges equals the number of bodies in the
system (as shown in Figure 2).

1198




cut joinot

2 Inertial Reference Point
and Frame

Figure 1 An Arbitrary Topology
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Figure 2 Equivalent Tree Topology

Figure 3 A Typical Hinge

1199



CONSTRAINED DYNAMICAL SYSTEM

For a mechanical system of n flexible bodies in a topological tree configura-
tion, the equations of motion are presented in Reference 1. Lagrange’s form
of D’Alembert’s principle was employed to derive the equations. A detailed
discussion of the approach is available in References 1 and 2. Equations
(14), (15) in Reference 1 are the motion equations for the system of Figure 2.
These equations are augmented by the kinematical constraint equations. This

augmentation is accomplished via the method of singular value decomposition
(see Reference 3).
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CONSTRAINED DYNAMICAL SYSTEMS
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LET : PIII DEFINE THE CONFIGURATION OF

UNCONSTRAINED SYSTEM

——n - - —— - o - -———

mIn

m<{n

NUMBER OF INDEPENDENT COORDINATES

= n—-RANK A

EQUATIONS OF MOTION

M ¢ = f + fc

fc - FORCES/MOMENTS OF CONSTRAINT

PROBLEMS OF PRACTICAL INTEREST

- SIMPLE NON HOLONOMIC OR HOLONOMIC CONSTRAINTS

- n+m 2nd ORDER D.E.

OR 2n+m 1st ORDER D.E.
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SINGULAR VALUE DECOMPOSITION
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APPLICATION OF SVD TO CONSTRAINED SYSTEMS
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V,Z SOLUTION OF Aq = 0

A*B PARTICULAR SOLUTION

DIFFERENTIATE

Aq = B - Aq

Z's ARE REDUCED SET OF n-r COORDINATES

Vo IS THE DESIRED TRANSFORMATION

a = A*B + V,% Z COLUMN VECTOR (n-r)
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e M§ = F + F°

PROJECTION ON NULL SPACE OF A

T,.. T T_c
V,M§ = V,F + V,F

SUBSTITUTE FOR §

T e T Toc _ oTy,+
V,MV,2'= V,F + V,F V,MA"B
e F¢ = ATh A - LAGRANGE MULTIPLIERS
T_.c T,T
V,F voaTa
T
=1 AV, 172 =0

T . T
° [vzuvzlz =V,

a = A'B + V,%

F - V:HA+B GOVERNING DIFF. EQN.
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DAMPING LAW

- = e - -

ACTUAL DAMPING LAV:
Ff(tl) = f(LOAD OVER CONTACT AREA,;

x(t); o < t ( t1. tl' uo-)’

Ff = FRICTION FORCE

x(t), 0 < t < ty. REPRESENTS THE HISTORY OF MOTION
PRIOR TO ty

IN GENERAL THE DAMPING LAW IS VERY COMPLICATED

COULOMB DAMPING

N ~ NORMAL LOAD
B, - STATIC COEFFICIENT OF FRICTION

By ~ DYNAMIC COEFFICIENT OF FRICTION
1 i(tl) > 0
SIGN(x(t,)) = 0 x(t,) =0

-1 i(tl) < 0
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COULOMB DAMPING (CONT.)

THE MOST COMMON DRY FRICTION DAMPING LAW

Bg = My OR Fs = Fd

MANY TIME DOMAIN AND FREQUENCEY DOMAIN STUDIES HAVE
BEEN PERFORMED FOR HARMONICALLY EXCITED SYSTEMS WITH
DRY FRICTION DAMPING. THERE ARE THREE BASIC METHODS
OF ANALYSIS

- EXACT
- HARMONIC APPROXIMATIONS

- TIME INTEGRATION
OUR APPROACH IS TIME INTEGRATION

STICK/SLIP MOTION

— T t
N————

STUCK REGION

x(t)

to
t, BECONES AN UNKNOWN.

STUCK HINGE RESULTS IN ADDITIONAL CONSTRAINTS ON
KINEMATICAL VARIABLES.




COULOMB DAMPER ALGORITHM

e A TYPICAL HINGE WITH COULOMB DAMPER

¢ TRACK Y (RELATIVE VELOCITY) FOR SIGN CHANGE

¢ Y CHANGES SIGN
COMPARE |Y DIFFERENCE| TO A PRESCRIBED ¢ ~ 0

IF GREATER THAN ¢ GO BACK TO PREVIOUS STEP AND REDUCE
THE STEP SIZE AND REPEAT UNTIL |Y DIFFERENCE| < e

ACTIVATE THE CONSTRAINT Y = 0 AND COMPUTE CONSTRAINT
FORCE f, FOR THIS CONSTRAINT

IF f, OVERCOMES fgq SLIP CONDITION, DEACTIVATE Y

L]
(=

IF NOT, STICK CONDITION, RETAIN Y = 0 AND KEEP
COMPARING f, WITH fqg UNTIL SLIP CONDITION
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EXAMPLE

// fecl fc2
Z T .,
% NN—__
R) R2
| y1 y2 'I
mp = 1 my = 1
kl = 2 k2 = 205
INITIAL
CONDITION yr = 1 y2 = .2
TEST CASES FOR VARIOUS COULOMB DAMPER LEVELS

CASE
CASE
CASE
CASE
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0

0
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